A five-digit numbers divisible by 3 is to be formed using the numerals 0, 1, 2, 3, 4 and 5, without repetition. The total number of ways this can be done is (1989 - 2 Marks)

- (a) 216
- (b) 240
- (c) 600
- (d) 3125
- (d) We know that a number is divisible by 3 only when the sum of the digits is divisible by 3. The given digits are 0, 1, 2, 3, 4, 5.

Here the possible number of combinations of 5 digits out of 6 are ${}^5C_4 = 5$, which are as follows—

$$1+2+3+4+5=15=3\times5$$

$$0+2+3+4+5=14$$
 (not divisible by 3)

$$0+1+3+4+5=13$$
 (not divisible by 3)

$$0+1+2+4+5=12=3\times4$$

$$0+1+2+3+5=11$$
 (not divisible by 3)

$$0+1+2+3+4=10$$
 (not divisible by 3)

Thus the number should contain the digits 1, 2, 3, 4, 5 or the digits 0, 1, 2, 4, 5.

Taking 1, 2, 3, 4, 5, the 5 digit numbers are = 5! = 120

Taking 0, 1, 2, 4, 5, the 5 digit numbers are = 5! - 4! = 96

∴ Total number of numbers = 120 + 96 = 216